

# **Briefing to Explore NEOs Objectives Workshop** (Explore NOW):

Exploration Precursor Robotic Missions (xPRM)
Point of Departure Plans
Jay Jenkins
xPRM Study Chair

Aug 10, 2010

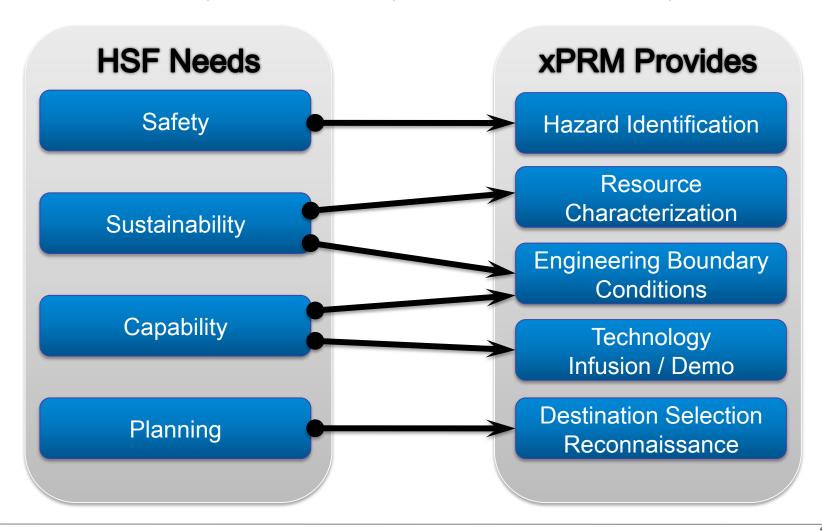
**NASA Headquarters** 

## **Background and Context**



- Human Exploration precursors were essential to the success of Project Apollo in the late 1960's to early 1970s:
  - Robotic precursors such as Surveyors and Lunar Orbiters defined the engineering boundary conditions and environments for human exploration of the Moon, as well as potential hazards
- More recently, human exploration precursors have been designed and flown in support of the 2004 National Space Policy Directive 12 Plan:
  - The Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite (LCROSS) are recent/current human exploration robotic precursors designed to provide applied knowledge essential for the safe and costeffective return of humans to the lunar surface
- No matter the human spaceflight destination beyond low Earth orbit (LEO), exploration robotic precursors are essential to ensure human health and safety:
  - Comments to this effect were made by the Augustine Committee in 2009
  - Exploration Precursor Robotic Missions to future human destinations are particularly important in the decade from 2010 to 2020 to characterize:
    - Near Earth Objects (NEOs)
    - Lunar resources (esp. volatiles)
    - Mars orbit and surface (resources, hazards, dust, toxicity)

### Introduction




- NASA Planning for the FY2011 budget request calls for a "steady stream of [Exploration] Robotic Precursor missions" and related activities:
  - We define this effort as xPRM
  - The xPRM effort would consist of two Programs:
    - xPRP: set of linked flight missions, instrument developments, and R&A for the purpose of acquiring applied precursor knowledge for human spaceflight (HSF)
      - Cost range \$500M to \$800M (total mission life cycle cost with launch)
    - **xScout:** focused, less-expensive, higher-risk missions, with cost cap of \$100M to \$200M including launch
  - These proposed program lines include a portfolio of missions traceable to HSF precursor requirements

## Why xPRM? Enabling HSF proactively...



xPRM uniquely and specifically addresses HSF priority needs.



## **xPRM** uniquely compliments SMD missions



XPRM
Missions
driven by
HSF
Objectives

SMD
Missions
driven by
Science
Objectives

- Science Mission Directorate (SMD) missions are driven almost entirely by science objectives set by the National Academies Decadal Survey process, and therefore do not typically address high-priority Exploration precursor/HSF objectives
- xPRM missions will be designed to conduct the precursor measurements/experiments to quantitatively inform and support HSF objectives
  - These are different objectives that lead to different activities in many cases
- There are exceptions in both directions
  - Where synergy exists, we will work to take smart advantage of it

| Sample Topic: Oxygen content of lunar regolith                                                                                         |                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSF/xPRM Questions:                                                                                                                    | SMD/Science Questions:                                                                                                                                       |
| Where is it localized and at what form and concentration? Can it be accessed? How to best access and process it into a HSF "resource"? | How does spatial distribution of oxygen inform the investigations of volatile sources and sinks within the solar system? [includes oxygen-bearing molecules] |

## **xPRM** Top Level Objectives and Principles



- To conduct precursor measurements/experiments\* in support of human exploration:
  - Quantify the <u>engineering boundary conditions</u> associated with the environments of human exploration beyond LEO.
  - Indentify <u>hazards</u> (to ensure safety)
  - Identify <u>resources</u> (to facilitate sustainability, lower launch mass, and "living off the land")
  - Provide strategic knowledge to inform the selection of human exploration destinations
- To provide a platform for technology flight demonstrations which support human exploration.
- To coordinate with other NASA directorates.
  - Avoid overlap, identify complementary objectives, leverage dual-use opportunities
- To **foster competition** in mission/payload/investigation selections.
- To foster opportunities for international collaboration which benefit human exploration.
- To foster participatory exploration opportunities

\*An HSF priority **precursor measurement/experiment** is a necessary component of any xPRM mission.

## **Exploration Precursor Robotic Program (xPRP) Planned Content**



- Flight Missions:
  - Precursor measurements/experiments to enable safe and effective HSF beyond LEO
  - Platforms for technology demonstration
- Instrument Development (Missions of Opportunity)
  - Enhance investigation opportunities and promote partnerships with Internationals, other Agencies, or SMD
  - Instruments will generally be competed with approximately annual SALMON-like call or perhaps in partnership with SALMON (SMD's Stand Alone Missions of Opportunity)
  - Fly on non-xPRP missions
- Research and Analysis for Exploration
  - Turn data into Strategic Knowledge for Exploration
    - Engineering information, visualization, dissemination
    - Institutes, workshops, research investigations

## xScout Program Planned Content



- Principal Investigator (PI)-led or small, center-led approach to reduce costs
- Budgeting \$100-\$200M per mission
  - Includes approx. \$50M for access to space (e.g.: Dual-Payload Attachment Fitting, co-manifest or small Expendable Launch Vehicle)
- Co-manifest with xPRP missions where practical
- First launch 2014
  - Stretch-goal of 2013 launch readiness (requires dedicated launch)
- 18-24 month cadence
- Higher-risk tolerance

#### Mission content:

- Focused scope in support of HSF objectives:
  - Could be threshold measurements or existence-proof experiments
- xScout AOs written to complement xPRP portfolio with the goal of accomplishing common xPRM objectives

## **Point of Departure xPRM Portfolio**



- xPRM would be uniquely poised to provide critical strategic knowledge for exploration from a diverse set of destinations.
  - xPRM starting in this decade would enable Human Exploration in the next.
    - Analogous to robotic surveyor landers ahead of Apollo human missions
  - Proposed scope uniquely focuses on HSF objectives while leveraging unique capabilities of partners.
    - · No other program would fulfill this objective.
  - Fully consistent with current best estimate objectives for future HSF at NASA



**NOTIONAL** Point of Departure – Subject to Change

## **NEO Campaign (Notionally 2014 and 2017)**

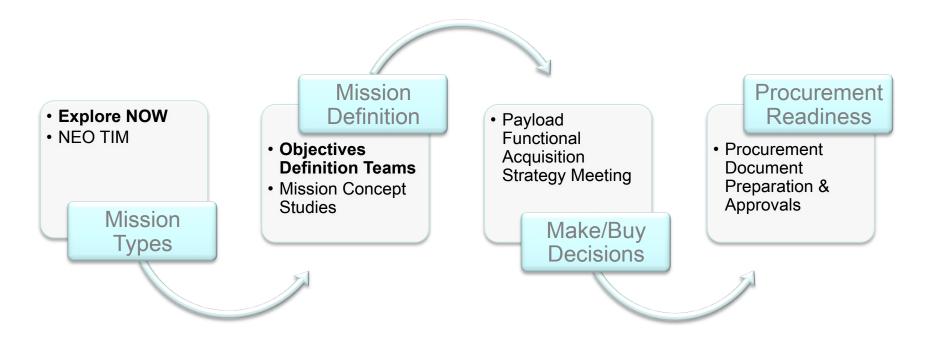


- \$640-840M life-cycle cost mission allocations
- 2025 HSF Asteroid mission would **likely only afford two xPRP opportunities** to inform the HSF architecture, while maintaining other xPRP objectives.
- Need to coordinate with HSF objectives definition teams to determine the appropriate campaign approach, and which combination/sequence of candidate missions:
  - "Shotgun" of 3 or 4 very small spacecraft to rendezvous with separate destinations with a limited focused-measurement payload on single launch
    - Would likely focus on top-level hazards and destination selection criteria
  - "Stack" of 2 "small-Discovery"-Class spacecraft to rendezvous with separate destinations with moderate payload on single launch.
    - Would likely focus on hazards, selection criteria, and more rigorous characterization.
  - Single Discovery-class spacecraft with HSF Objectives
    - More in-depth measurements and investigations at expense of target diversity.
  - NEO Telescopic Survey
    - Helio-centric orbit inside the orbit of earth.
    - Would likely focus on identification and remote characterization (size, spin, albedo, thermal inertia, roughness, trajectory determination, etc) to provide robust slate options for HSF exploration.
- All options have potentially strong collateral value to science and planetary defense.
- As mission definition matures, possible international partnerships will continue to be explored.

## **NEO Telescopic Survey (NTS) Mission Option**



- Current slate of HSF NEO candidates may not be sufficiently robust.
- Per NASA Johnson Space Center analysis: 44-known NEOs are reachable humans assuming notional Ares V-class launch vehicle performance; However:
  - All but 17 may be deemed "too small" to visit by humans
  - Of those, 15 have opportunities in the (very) wide timeframe of interest
  - Of those, only 3 have mission durations on the order of 180 days
  - Of those, only 1 has a launch window in 2025 (the next being 2036 & 2046)
  - There are additional risk factors which could further eliminate candidates (spin rate, binary system, dormant comets)
- NTS could discover 1000's of additional objects >100m providing a more robust set of candidate targets.
- Need to determine if this current slate of candidates is "sufficient" and if size and mission duration limits are valid assumptions.


## **NEO Rendezvous Mission Objectives**



- Rendezvous missions would need to influence engineering concepts for HSF NEO missions in 2025
- Paucity of HSF objectives for NEOs; assumed xPRM Objectives would focus on:
  - Hazards, Prox-Ops, Quantify engineering boundary conditions
- Measurements (potential candidates):
  - Sub-meter-per-pixel imaging in multiple colors (possibly <10cm/pixel)</li>
  - Geodetic imaging lidar altimetry (meter-scale topography)
  - Compositional mapping: Gamma-ray/Neutron Spectrometry (GRNS) best if low altitude orbit can be established for months
  - Small sounding-imaging-radar or long-wavelength sounder for internal structure
  - 2-way RF ranging for gravity field
- Additional Options:
  - Proximity remote sensing, beacon placement, small hoppers, touch & go, grappling, sample return
- Net investigations would be a balance of measurement scope versus target diversity within funding limits.

## **xPRM NEO Near-term Planning Activities**





- Near-term planning activities will continue to refine objectives, mission types and concepts
- Public input solicited at Explore NOW and in upcoming Objective Definition Teams.

## **Summary**



- xPRM would be uniquely poised to provide critical applied knowledge for Exploration from a diverse set of destinations.
  - xPR Missions starting in this decade would enable Human Exploration in the next
    - Analogous to robotic surveyor landers ahead of Apollo human missions
  - Uniquely focuses on HSF objectives while leveraging unique capabilities of partners.
    - No other program fulfills this objective
  - Fully consistent with direction and best estimate objectives for future HSF at NASA
- Study content is responding to recent change toward NEO focus
- Objective Definition Team Activities and System Engineering Analyses are necessary to refine definitions of mission scope and specific content
- Human Exploration Framework Team products to be folded in as available.

## **Explore NOW Ties into xPRM Planning**



- Explore NOW will assist with the planning the scope of potential precursor missions to support the development of knowledge needed to design a human mission to a NEO.
  - To be most useful for xPRM planning, identification of knowledge gaps and the measurements to fill them must be tied to Human Spaceflight objectives and activities.

Derived Needs

- Human objectives at NEOs
- Objectives
- Activities
- Target Characteristics

Planning Input

- Knowledge Gaps (that tie to preparation of Human Missions)
- Precursor Measurement Investigations (that tie to Knowledge Gaps)
- Category of Measurement (EBC, Resource, Hazards, Selection, Other)
- Criticality of Measurement

Bonus Question Given a Human NEO mission of your choice, what TWO robotic precursors would you launch to prepare?